criterion performance measurements

overview

want to understand this report?

map/inline

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.7186988948217686e-4 3.726765330711036e-4 3.766412045885275e-4
Standard deviation 1.0504752840610923e-7 5.159948730825623e-6 1.1846179234395934e-5

Outlying measurements have slight (6.264164410733519e-2%) effect on estimated standard deviation.

map/transformers

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.7174953365171895e-4 3.7177055946477117e-4 3.7181216296632377e-4
Standard deviation 4.7597661096306695e-8 9.178362410598543e-8 1.6403741617400122e-7

Outlying measurements have slight (1.0987654320987656e-2%) effect on estimated standard deviation.

map/transformers+inline

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.7252842017052485e-4 3.734591868598133e-4 3.7701745480403205e-4
Standard deviation 1.3395022951035307e-6 5.082602172477005e-6 1.0994490301064082e-5

Outlying measurements have slight (6.250076458751079e-2%) effect on estimated standard deviation.

drop/inline

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.1034582396278525 0.1055111203905222 0.10769065257103427
Standard deviation 2.4590985082454738e-3 3.3988953948084857e-3 4.6854418695683984e-3

Outlying measurements have slight (9.876543209876536e-2%) effect on estimated standard deviation.

drop/transformers

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.5116518669512016 0.5176712583259352 0.5214209607758926
Standard deviation 0.0 5.6659769210421e-3 6.494675156591758e-3

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

drop/transformers-inline

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.10330804545821012 0.10541088707741829 0.10765183778865502
Standard deviation 2.4373722215995106e-3 3.5240376668613776e-3 4.922742262406657e-3

Outlying measurements have slight (9.876543209876543e-2%) effect on estimated standard deviation.

map . drop . map/inline

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.26140520189460575 0.27407030427278617 0.29170050349392507
Standard deviation 4.393071091553041e-3 1.812180789854594e-2 2.4176119514871905e-2

Outlying measurements have moderate (0.1714088955402361%) effect on estimated standard deviation.

map . drop . map/transformers

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.9591676264756849 0.9853377094647732 1.0011427389620435
Standard deviation 0.0 2.4088170236790437e-2 2.7375114104396994e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

map . drop . map/transformers-inline

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.2609030828719366 0.26834075192288964 0.2736855220530654
Standard deviation 2.493166327410784e-3 7.3425661906146725e-3 1.0027710707687364e-2

Outlying measurements have moderate (0.16%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.